sábado, 21 de julio de 2012

OPTICA FISICA

Cita para la reflexión: "La ventaja de ser inteligente es que así resulta más fácil pasar por tonto. lo contrario es mucho más difícil" (Kurt Tucholsky)

LA LUZ Y LA OPTICA





La óptica se ocupa del estudio de la luz, de sus características y de sus manifestaciones. La reflexión y la refracción por un lado, y las interferencias y la difracción por otro, son algunos, de los fenómenos ópticos fundamentales. Los primeros pueden estudiarse siguiendo la marcha de los rayos luminosos. Los segundos se interpretan recurriendo a la descripción en forma de onda.
El conocimiento de las leyes de la óptica permite comprender cómo y por qué se forman esas imágenes, que constituyen para el hombre la representación más valiosa de su mundo exterior.


La luz es una forma de energía que ha transformado la vida de la humanidad a medida que ésta fue capaz de ir descubriendo sus características. La bombilla es una fuente artificial de luz.


LA PROPAGACION DE LA LUZ

La luz emitida por las fuentes luminosas es capaz de viajar a través de materia o en ausencia de ella, aunque no todos los medios permiten que la luz se propague a su través.Desde este punto de vista, las diferentes sustancias materiales se pueden clasificar en opacas, transparentes y traslucidas. Aunque la luz es incapaz de traspasar las opacas, puede atravesar las otras. Las sustancias transparentes tienen, además, la propiedad de que la luz sigue en su interior una sola dirección. Éste es el caso del agua, el vidrio o el aire. En cambio, en las traslucidas la luz se dispersa, lo que da lugar a que a través de ellas no se puedan ver las imágenes con nitidez. El papel vegetal o el cristal esmerilado constituyen algunos ejemplos de objetos traslúcidos.

Los rayos luminosos representan las direcciones en los que la luz se propaga. Un conjunto de rayos constituye un haz. La luz se propaga en línea recta en un medio transparente y homogéneo.
En un medio que además de ser transparente sea homogéneo, es decir, que mantenga propiedades idénticas en cualquier punto del mismo, la luz se propaga en línea recta. Esta característica, conocida desde la antigüedad, constituye una ley fundamental de la óptica geométrica. Dado que la luz se propaga en línea recta, para estudiar los fenómenos ópticos de forma sencilla, se acude a algunas simplificaciones útiles. Así, las fuentes luminosas se consideran puntuales, esto es, como si estuvieran concentradas en un punto, del cual emergen rayos de luz o líneas rectas que representan las direcciones de propagación.





Velocidad e índice de refracción
La velocidad con que la luz se propaga a través de un medio homogéneo y transparente es una constante característica de dicho medio, y por tanto, cambia de un medio a otro. En la antigüedad se pensaba que su valor era infinito, lo que explicaba su propagación instantánea.
Debido a su enorme magnitud la medida de la velocidad de la luz c ha requerido la invención de procedimientos ingeniosos que superarán el inconveniente que suponen las cortas distancias terrestres en relación con tan extraordinaria rapidez. Métodos astronómicos y métodos terrestres han ido dando resultados cada vez más próximos. En la actualidad se acepta para la velocidad de la luz en el vacío el valor c = 300 000 km/s. En cualquier medio material transparente la luz se propaga con una velocidad que es siempre inferior a c. Así, por ejemplo, en el agua lo hace a 225 000 km/s y en el vidrio a 195 000 km/s.
En óptica se suele comparar la velocidad de la luz en un medio transparente con la velocidad de la luz en el vacío, mediante el llamado índice de refracción absoluto n del medio: se define como el cociente entre la velocidad c de la luz en el vacío y la velocidad v de la luz en el medio.

La primera determinación experimental de la velocidad de la luz

En el año 1672 el astrónomo danés Olaf Roëmer consiguió realizar la primera determinación de la velocidad de la luz, considerando para ello distancias interplanetarias. Al estudiar el periodo de revolución de un satélite (tiempo que emplea en describir una órbita completa) del planeta Júpiter, observó que variaba con la época del año entre dos valores extremos.
Roëmer interpretó este hecho como consecuencia de que la Tierra, debido a su movimiento de traslación en torno al Sol, no se encontraba siempre a la misma distancia del satélite, sino que ésta variaba a lo largo del año. Los intervalos medidos representaban realmente la suma del periodo de revolución más el tiempo empleado por la luz en recorrer la distancia entre el satélite y la Tierra. Por esta razón la luz procedente del satélite tardaría más tiempo en llegar al observador cuando éste se encontrase en la posición más alejada, lo que se traduciría en un intervalo de tiempo algo más largo.

La reflexión de la luz
Al igual que la reflexión de las ondas sonoras, la reflexión luminosa es un fenómeno en virtud del cual la luz al incidir sobre la superficie de los cuerpos cambia de dirección, invirtiéndose el sentido de su propagación. En cierto modo se podría comparar con el rebote que sufre una bola de billar cuando es lanzada contra una de las bandas de la mesa.
La visión de los objetos se lleva a cabo precisamente gracias al fenómeno de la reflexión. Un objeto cualquiera, a menos que no sea una fuente en sí mismo, permanecerá invisible en tanto no sea iluminado. Los rayos luminosos que provienen de la fuente se reflejan en la superficie del objeto y revelan al observador los detalles de su forma y su tamaño.
De acuerdo con las características de la superficie reflectora, la reflexión luminosa puede ser regular o difusa. La reflexión regular tiene lugar cuando la superficie es perfectamente lisa. Un espejo o una lámina metálica pulimentada reflejan ordenadamente un haz de rayos conservando la forma del haz. La reflexión difusa se da sobre los cuerpos de superficies más o menos rugosas.

El principio de Huygens y la ley de Snell
El fenómeno de la refracción luminosa puede ser explicado admitiendo la naturaleza ondulatoria de la luz a partir del principio de Huygens y siguiendo un método geométrico de construcción ideado por él. La noción de rayo en la óptica ondulatoria equivale a la de una línea recta que define la dirección en la que la perturbación progresa a través del medio, siendo perpendicular a los frentes de onda. En las ondas circulares o esféricas los rayos son, pues, radiales.


Objetos e imágenes

En ocasiones los rayos de luz que, procedentes de un objeto, alcanzan el ojo humano y forman una imagen en él, han sufrido transformaciones intermedias debidas a fenómenos ópticos tales como la reflexión o la refracción. Todos los aparatos ópticos, desde el más sencillo espejo plano al más complicado telescopio, proporcionan imágenes más o menos modificadas de los objetos.
La determinación de las relaciones existentes entre un objeto y su imagen correspondiente, obtenida a través de cualquiera de estos elementos o sistemas ópticos, es uno de los propósitos de la óptica geométrica. Su análisis riguroso se efectúa, en forma matemática, manejando convenientemente el carácter rectilíneo de la propagación luminosa junto con las leyes de la reflexión y de la refracción. Pero también es posible efectuar un estudio gráfico de carácter práctico utilizando diagramas de rayos, los cuales representan la marcha de los rayos luminosos a través del espacio que separa el objeto de la imagen.
La reflexión de un objeto en un espejo plano da lugar a una imagen que está situada al otro lado del espejo y que por tanto, no puede ser observada directamente o recogida en una pantalla. Se dice por ello que la imagen es virtual.

Espejos

Formación de imágenes en espejos planos: conforme se deduce de las leyes de la reflexión, la imagen P' de un punto objeto P respecto de un espejo plano S' estará situada al otro lado de la superficie reflectora a igual distancia de ella que el punto objeto P. Además la línea que une el punto objeto P con su imagen P' es perpendicular al espejo. Es decir, P y P' son simétricos respecto de S; si se repite este procedimiento de construcción para cualquier objeto punto por punto, se tiene la imagen simétrica del objeto respecto del plano del espejo.
Dicha imagen está formada, no por los propios rayos, sino por sus prolongaciones. En casos como éste se dice que la imagen es virtual. Sin embargo, la reflexión en el espejo plano no invierte la posición del objeto. Se trata entonces de una imagen directa. En resumen, la imagen formada en un espejo plano es virtual, directa y de igual tamaño que el objeto.
Formación de imágenes en espejos esféricos
Los espejos esféricos tienen la forma de la superficie que resulta cuando una esfera es cortada por un plano. Si la superficie reflectora está situada en la cara interior de la esfera se dice que el espejo es cóncavo. Si está situada en la cara exterior se denomina convexo. Las características ópticas fundamentales de todo espejo esférico son las siguientes:
  • Centro de curvatura C: Es el centro de la superficie esférica que constituye el espejo.
  • Radio de curvatura R: Es el radio de dicha superficie.
  • Vértice V: Coincide con el centro del espejo.
  • Eje principal: Es la recta que une el centro de curvatura C con el vértice V.
  • Foco: Es un punto del eje por el que pasan o donde convergen todos los rayos reflejados que inciden paralelamente al eje. En los espejos esféricos se encuentra en el punto medio entre el centro de curvatura y el vértice.
Cuando un rayo incidente pasa por el centro de curvatura, el rayo reflejado recorre el mismo camino, pero en sentido inverso debido a que la incidencia es normal o perpendicular.
Asimismo, cuando un rayo incide paralelamente al eje, el rayo reflejado pasa por el foco, y, viceversa, si el rayo incidente pasa por el foco el reflejado marcha paralelamente al eje. Es ésta una propiedad fundamental de los rayos luminosos que se conoce como reversibilidad.





Formación de imágenes en espejos esféricos
Con las reglas descritas en la página anterior, que son consecuencia inmediata de las leyes de la reflexión, es posible construir la imagen de un objeto situado sobre el eje principal cualquiera que sea su posición. Basta trazar dos rayos incidentes que, emergiendo del extremo superior del objeto discurran uno paralelamente al eje y el otro pasando por el centro de curvatura C; el extremo superior del objeto vendrá determinado por el punto en el que ambos rayos convergen. Cuando la imagen se forma de la convergencia de los rayos y no de sus prolongaciones se dice que la imagen es real.
 
En los espejos cóncavos el rayo 1 al reflejarse pasa por el foco mientras que el rayo 2 no sufre desviación. En los espejos convexos es la prolongación del rayo 1 reflejado la que pasa por el centro de curvatura, lo mismo que en el caso del rayo 2.
En la construcción de imágenes en espejos cóncavos y según sea la posición del objeto, se pueden plantear tres situaciones diferentes que pueden ser analizadas mediante diagramas de rayos:
a. El objeto está situado respecto del eje más allá del centro de curvatura C. En tal caso la imagen formada es real, invertida y de menor tamaño que el objeto.
b. El objeto está situado entre el centro de curvatura C y el foco F. La imagen resulta entonces real, invertida y de mayor tamaño que el objeto.
c. El objeto está situado entre el foco F y el vértice V. El resultado es una imagen virtual, directa y de mayor tamaño que el objeto.
Láminas y prismas

La luz en las láminas.
Cuando la luz atraviesa una lámina de material transparente el rayo principal sufre dos refracciones, pues encuentra en su camino dos superficies de separación diferentes. El estudio de la marcha de los rayos cuando la lámina es de caras planas y paralelas, resulta especialmente sencillo y permite familiarizarse de forma práctica con el fenómeno de la refracción luminosa.
En una lámina de vidrio de estas características las normales N y N' a las superficies límites S y S' son también paralelas, por lo que el ángulo de refracción respecto de la primera superficie coincidirá con el de incidencia respecto de la segunda. Si además la lámina está sumergida en un mismo medio como puede ser el aire, éste estará presente a ambos lados de la lámina, de modo que la relación entre los índices de refracción aire-vidrio para la primera refracción será inversa de la correspondiente a la segunda refracción vidrio-aire.
Eso significa que, de acuerdo con la ley de Snell, el rayo refractado en la segunda superficie S' se desviará respecto del incidente alejándose de la normal N' en la misma medida en que el rayo refractado en la superficie S se desvíe respecto de su incidente, en este caso acercándose a la normal.
Esta equivalencia en la magnitud de desviaciones de signo opuesto hace que el rayo que incide en la lámina y el rayo que emerge de ella sean paralelos, siempre que los medios a uno y otro lado sean idénticos. En tal circunstancia las láminas plano-paralelas no modifican la orientación de los rayos que inciden sobre ellas, tan sólo los desplazan.


En una lámina de material transparente la luz sigue caminos múltiples. Ello es debido a que en cada superficie límite el haz incidente se divide en dos, uno reflejado y otro refractado.
Objetos e imágenes

Lentes


as lentes son objetos transparentes, limitados por dos superficies esféricas o por una superficie esférica y otra plana, que se hallan sumergidas en un medio, asimismo transparente, normalmente aire.
Las lentes desempeñan un papel esencial como componentes de diferentes aparatos ópticos. Con lentes se corrigen los diferentes defectos visuales, se fabrican los microscopios, las máquinas fotográficas, los proyectores y muchos otros instrumentos ópticos.
Tipos de lentes
De la combinación de los tres posibles tipos de superficies límites, cóncava, convexa y plana, resultan las diferentes clases de lentes. Según su geometría, las lentes pueden ser bicóncavas, biconvexas, plano-cóncavas, plano convexas y cóncavo-convexas.
De izquierda a derecha, diferentes tipos de lentes según su geometría: lente biconvexa, plano-convexa, cóncavo-convexa. Desde el punto de vista óptico las lentes convergentes reúnen los rayos que inciden paralelamente en un punto llamado foco; las lentes divergentes, por el contrario, los separan.


Desde el punto de vista de sus efectos sobre la marcha de los rayos es posible agrupar los diferentes tipos de lentes en dos grandes categorías: lentes convergentes y lentes divergentes.
Las lentes convergentes se caracterizan porque hacen converger, en un punto denominado foco, cualquier haz de rayos paralelos que incidan sobre ellas. En cuanto a su forma, todas ellas son más gruesas en la zona central que en los bordes.
Las lentes divergentes, por su parte, separan o hacen diverger los rayos de cualquier haz paralelo que incida sobre ellas, siendo las prolongaciones de los rayos emergentes las que confluyen en el foco. Al contrario que las anteriores, las lentes divergentes son menos gruesas en la zona central que en los bordes.
Formación de imágenes
Para estudiar la formación de imágenes por lentes, es necesario mencionar algunas de las características que permiten describir de forma sencilla la marcha de los rayos. . Es el plano central de la lente. Es el centro geométrico de la lente. Tiene la propiedad de que todo rayo que pasa por él no sufre desviación alguna. Es la recta que pasa por el centro óptico y es perpendicular al plano óptico. (foco objeto y foco imagen, respectivamente). Son un par de puntos, correspondientes uno a cada superficie, en donde se cruzan los rayos (o sus prolongaciones) que inciden sobre la lente paralelamente al eje principal. Es la distancia entre el centro óptico O y el foco F.
  • Plano óptico
  • Centro óptico O.
  • Eje principal.
  • Focos principales F y F'
  • Distancia focal f.
Lentes convergentes

Para proceder a la construcción de imágenes debidas a lentes convergentes, se deben tener presente las siguientes reglas:
Cuando un rayo incide sobre la lente paralelamente al eje, el rayo emergente pasa por el foco imagen F'. Inversamente, cuando un rayo incidente pasa por el foco objeto F, el rayo emergente discurre paralelamente al eje. Finalmente, cualquier rayo que se dirija a la lente pasando por el centro óptico se refracta sin sufrir ninguna desviación.


Lentes divergentes
La construcción de imágenes formadas por lentes divergentes se lleva a cabo de forma semejante, teniendo en cuenta que cuando un rayo incide sobre la lente paralelamente al eje, es la prolongación del rayo emergente la que pasa por el foco objeto F. Asimismo, cuando un rayo incidente se dirige hacia el foco imagen F' de modo que su prolongación pase por él, el rayo emergente discurre paralelamente al eje.
Finalmente y al igual que sucede en las lentes convergentes, cualquier rayo que se dirija a la lente pasando por el centro óptico se refracta sin sufrir desviación.
Aunque para lentes divergentes se tiene siempre que la imagen resultante es virtual, directa y de menor tamaño, la aplicación de estas reglas permite obtener fácilmente la imagen de un objeto situado a cualquier distancia de la lente.




















No hay comentarios:

Publicar un comentario